1、按《混凝土结构设计规范》的要求进行计算,公式全部在里面。2、在荷载作用下,地基要产生变形。随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。这种小范围的剪切破坏区,称为塑性区(plastic zone)。地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。此时地基达到极限承载力。
钢筋混凝土梁截面的计算理论有弹性理论和破坏强度理论两种。① 弹性理论。以工作阶段Ⅱ的应力状态为基础,假设:构件正截面在受力后仍保持平面并与纵轴垂直;混凝土不承担拉应力,全部拉力由钢筋承担;无论混凝土和钢筋的应力-应变关系都服从胡克定律;钢筋弹性模量Es与混凝土弹性模量Ec的为一常数。为了利用匀质弹性体材料力学的公式,需把钢筋和混凝土两种材料组成的截面折算成为单一材料的截面。由于钢筋和混凝土之间的粘结力很好,故认为它们之间的应变保持一致,钢筋的应力等于混凝土应力乘以αE,从而钢筋面积AS可以折算成为混凝土面积αEAS,由折算截面积对中和轴的静矩等于零的条件,可得出中和轴至混凝土受压区边缘的距离,梁截面内任意点的应力可由下式算得:σ=Mr/I0,式中M为作用弯矩;r为从中和轴到计算纤维水平的距离;I0为折算截面面积对中和轴的惯性矩。② 破坏强度理论。以工作阶段Ⅲ的应力状态为基础,假设,混凝土开裂后,不承担拉应力,全部拉力由钢筋承担,钢筋达到屈服极限fy;受压区混凝土的应力-应变关系不服从胡克定律,其应力分布图形为曲线形,但为了计算的简化,压区混凝土的应力图形取为矩形,其弯曲抗压强度等于fcm(图3)。 钢筋混凝土梁由水平力平衡条件得中和轴至混凝土受压边缘的距离x=Asfy/bfcm,截面极限抵抗矩的内力臂为z=h0-x/2,于是由受拉钢筋控制的极限抵抗矩为 式中h0为受拉钢筋中心至混凝土受压边缘的距离。试验结果表明,只有当混凝土的受压区高度x≤δh0时,上列公式才能成立。式中δ值主要取决于钢筋品种和混凝土标号,约为0.35~0.55。设计钢筋混凝土梁时,除了计算其正截面的强度外,还要计算剪力作用下的斜截面强度,以保证其安全。此外,还需要计算梁的抗裂度、裂缝开展宽度和挠度都不能超过容许的限值,以满足正常使用的要求。对于承受多次反复荷载作用的梁,如铁路桥梁、吊车梁,还须计算其疲劳强度。
设为集中荷载40KN(4t),混凝土等级C25、钢筋等级HRB400.结构安全等级二级,永久荷载分项系数1.35,订酣斥叫俪既筹习船卢活荷载分项系数1.4,荷载效应为基本组合。经计算,次梁250×300,上部钢筋2Φ12、下部钢筋2Φ16,箍筋Φ8@200.主梁240×350,上部钢筋2Φ12、下部钢筋2Φ16,箍筋Φ8@200.次梁处每侧3Φ8附加箍筋。
回答者: 缘之家
8人回答